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The temporal behavior of electric fields in arbitrary double-negative planar slabs is systematically investi-
gated in this paper, from both analytical and numerical perspectives. Concerning infinite slabs, a set of exact
expressions for an exponential current excitation is derived through an efficient complex analysis, and an
integrated study of surface polariton frequencies is performed. Subsequently, the significant case of a source
with a random spatial profile is explored in order to obtain rigorous relations for the field and transient
phenomena damping time with respect to problem parameters. On the other hand, a robust finite-difference
time-domain methodology is introduced for the comprehensive examination of finite slabs, whose numerical
simulations dictate the adoption of a resonatorlike discipline. This inevitable, yet very instructive, convention
is physically justified by the almost perfect surface mode reflections at the edges of the slab. In this manner, the
proposed formulation reveals a prominent increase in the excited polariton amplitude, relative to the corre-
sponding infinite arrangements, which leads to larger transient times.
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I. INTRODUCTION

Double-negative �DNG� or left-handed metamaterials, as
Veselago �1� initially named them, are nonphysical compos-
ite substances with negative constitutive parameters, typi-
cally synthesized using periodic arrays of small metallic
structures �thin wires, split-ring resonators� �2–7� or suitably
interconnected lumped circuit elements �capacitors, induc-
tors� �8–10�. Since the first actual fabrication in the micro-
wave regime �11�, their wide applicability has become an
issue of constant scientific research �12–25�, especially in the
areas of waveguides and radiating devices �26–34�. How-
ever, recent studies unveiled the possibility of employing
these intriguing media at optical frequencies �35� as well,
therefore approaching the concept of perfectly flat lenses
along with its practical implementation.

The potential for perfect focusing of electromagnetic
waves via planar DNG slabs stems from Pendry’s theoretical
work �36�, which states that such structures, in their infinite
rendition, can amplify evanescent waves and reconstruct the
subwavelength information of a nearby electromagnetic
source in the image plane. This important phenomenon, usu-
ally referred to as the superlensing effect, allows the surpass-
ing of the diffraction limit, always present in conventional
lens systems. In fact, the preceding amplification of evanes-
cent waves has been attributed to the evolution of specific
resonant modes, designated surface polaritons, at the air-
metamaterial interfaces, whose properties have been elabo-
rately demonstrated in Refs. �37–40�. Moreover, the role of
losses and refractive index deviations from the ideal −1 case
has been the subject of several works �41–43�, which re-
vealed a general degradation of image quality. In this con-
text, Ref. �44� examined how the length of finite slabs affects
the overall focusing behavior, while Refs. �45,46� tackled the
difficulties encountered in the finite-difference time-domain

�FDTD� implementation of DNG materials, offering useful
guidelines for acquiring accurate and reliable results.

Despite the fact that in superlensing systems we are
strongly interested in the field amplitude at a specific fre-
quency, the presence of resonance processes, such as the
aforementioned surface polaritons, may induce substantial
transient phenomena. In this direction, Ref. �47� explores
temporal field features through a mechanical analog for the
excited modes, whereas in Ref. �16� a FDTD algorithm is
incorporated to certify that the amplitude of the recon-
structed image undergoes significant fluctuations until it
reaches the desired steady state. Furthermore, a thorough
parametric study of transient mechanisms in infinite DNG
slabs pertaining to losses and source spectral characteristics,
is conducted in Refs. �48,49� with the aid of time-dependent
Green’s functions. Its outcomes indicate that, for specific
slab dimensions, the transient time can be effectively re-
duced by properly selecting the source’s switching-on time.
Consequently, it would indeed be very expedient for the de-
sign of a realistic lens system, if existing practices were en-
riched by accurate analytical relations between the temporal
field evolution and the structure’s geometrical and spectral
traits.

It is the objective of this paper to develop a class of exact
schemes for the time-domain electric field in infinite planar
metamaterial slabs and examine the performance of their fi-
nite counterparts via optimized computational models. Ac-
cording to the principal aspects of this methodology, electric
fields are expressed in terms of a double complex integral
with respect to frequency and the longitudinal �parallel to
slab faces� wave number component k�. In contast to previ-
ous approaches, which performed the integration through nu-
merical means, a rigorous contour path technique for
frequency-domain integration is incorporated to form ana-
lytical relations. In this context, a complete investigation, in
the complex frequency plane, of the integrand poles coincid-
ing with the surface polariton resonant frequencies is accom-
plished for different slab parameters. Successively, the*tsibukis@auth.gr
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frequency-domain integral, which concurs with the electric
field generated by a current source of exponential longitudi-
nal profile, is given as a compact sum of three purely ana-
lytical terms. Then, the integration of k� is evaluated by a
stationary phase approximation, expressing the total field as
a superposition of two terms: one at the central frequency
and the other at the surface polariton with zero group veloc-
ity. The analysis illustrates that, even in the absence of
losses, unlike what has been formerly stated, transient phe-
nomena tend to zero through an inverse square root law. In
this way, the two contradictory occurrences, namely, the de-
generated image quality of lossy configurations and the in-
stabilities of lossless setups, during the design stage, are suc-
cessfully circumvented. For the finite case, on the other
hand, meticulous numerical simulations with an appropri-
ately devised FDTD method display the presence of a highly
resonant behavior, causing the excitation of several modes.
Finally, a cavitylike approach is efficiently introduced to de-
scribe the overall phenomenon, and meaningful physical in-
terpretations are carefully attempted. The results indicate an
increase in the transient time, comparatively to the infinite
slab, which is attributed to the confinement of resonant en-
ergy in the region of the DNG medium.

II. ANALYSIS OF INFINITE DNG SLABS: THEORETICAL
FORMULATION

As already emphasized, a point of crucial importance in
DNG superlensing systems is the derivation of an exact re-
lation connecting the structure’s geometric and electromag-
netic parameters and the source’s spectral features with the
focusing efficiency and the transient phenomena damping
time. This is essentially the aim of this section, where,
through an enhanced mathematical algorithm, we derive a
family of accurate analytical formulas for the temporal evo-
lution of field quantities and the prompt calculation of am-
plitude and damping factors for the several surface modes.
The key merit of our explicit criterion rests on the potential
of directly choosing all structural parameters and so evade
the conventional “trial and error” practices of most numerical
methods, which entail successive and rather laborious simu-
lations until the desired result is obtained. Hence, the total
computational overhead is drastically diminished and the
physical mechanisms that govern the slab’s functional at-
tributes receive an intuitive and sound interpretation.

Let us initiate our analysis by considering a lossy planar
DNG slab, of width d along the x axis and infinite toward the
y, z directions, as presented in Fig. 1. The metamaterial fol-
lows a dispersive Drude model for both �r and �r, with a
plasma frequency �p and a collision factor �. The structure
is illuminated by a current sheet Js�y ,z , t� on a constant x
plane at distance ds from the left-hand air-slab interface. For
the sake of simplicity, the TE-polarized case is examined,
i.e., the electric field intensity has only a z component. Then,
only the z-directed part of the current source is nonzero and
described by Jsz�y , t�= f�y�h�t�, where f�y� denotes the spa-
tial distribution of the source and h�t� its temporal evolution.
Herein, we suppose that h�t�=gon�t�sin��0t�, with gon�t� the
modulation function expressing the transition from 0 �for t

�0� to 1 �for t�T�, T the transition time, and �0 the fre-
quency at which the refractive index of the medium is −1
− j�. As will be proven later, a proper selection of gon�t� may
yield smaller transient times for the image field.

A convenient means to express electric field intensity can
be devised from the source spatial spectral content. In par-
ticular, Jsz�y , t� is represented as a superposition of the
Jsz�y , t ;ky�=e−jkyyh�t� currents, with ky �R. In fact, the most
significant terms are those with �ky � ��0 /c, since they con-
vey the subwavelength information of the source at �0 and
each of them excites a unique set of surface plasmons, char-
acterized via their e−jkyy variation along the slab faces. This
reestablishment of the initial general problem, amply serves
our goal of developing analytical formulas for the field tran-
sient time, as the latter is fully determined by the surface
plasmon temporal evolution. Thus, if F�ky� is the Fourier
transform of f�y� and Ez�x ,y , t ;ky� the field generated by
Jsz�y , t ;ky�, the total field is described in terms of

Ez�x,y,t� =
1

2	
�

−





F�ky�Ez�x,y,t;ky�dky . �1�

In turn, Ez�x ,y , t ;ky� is calculated by superimposing the ef-
fects of H���ej��t−kyy� currents, with H��� the temporal Fou-
rier transform of h�t�. Eventually, at the focus plane x=xf,
one acquires

Ez�xf,y,t;ky� = −
�0e−jkyy

4	
�

−



 ej��t−kxd�

S���A���
H���� d� , �2�

where

S��� = kx cos� kx�d

2
	 + j

kx�

�r
sin� kx�d

2
	 , �3a�

A��� = cos� kx�d

2
	 + jkx

�r

kx�
sin� kx�d

2
	 , �3b�

and kx=
�2 /c2−ky
2, kx�=
�r�r�

2 /c2−ky
2 are the x-directed

wave number components in the air and DNG slab, respec-

FIG. 1. Geometry of a planar DNG slab, infinite in the y, z
directions, illuminated by a current source on a constant x plane.
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tively, with c=1/
�0�0 the speed of light in vacuum. For
clarity and throughout this paper, the integral in Eq. �2� is
denoted as I, and its integrand as K���. Furthermore, the
S��� and A��� terms correspond to the symmetrical and an-
tisymmetrical surface modes, evolving at the air-
metamaterial interfaces.

Since K��� is an even function with respect to kx�, the
overall integration is not affected by the branches of kx�, in
contrast to kx, for which we should take into account its
behavior in the complex � plane. To this end, the latter is
written as a product of two square roots, namely,

kx =
1

c

� − cky


� + cky . �4�

Considering that the primary argument of z in 
z is restricted
to the interval from −	 /2 to 3	 /2, the branch cuts of kx are
the lines with Re�z�= ±cky and Im�z��0. In fact, the pres-
ence of these branch cuts in the upper half � plane, where
Im����0, requires that the integration is conducted in the
lower half plane, as depicted in Fig. 2 with the blue solid
line. Moreover, and after some algebraic manipulations, it is
found that the integral of K��� over the lower infinite semi-
circle �green dashed line in Fig. 2� is 0 for t� �xf −xs� /c
=2d /c. This issue, together with the absence of poles in the
lower complex semiplane, reveals that our choice for kx sat-
isfies the causality principle and therefore it is absolutely
valid. The prior technique will be very enlightening in the
derivation of the proposed analytical schemes as well as in
the numerical calculation of I, intended to verify the accu-
racy and reliability of the methodology.

As illustrated in the ensuing formulation, the transient be-
havior of the DNG superlensing system is resolved by the
surface plasmons whose oscillation frequencies lie near the
central one. Since the plasmonic frequencies coincide with
the poles of K���, it is instructive to stress some critical
issues about them. The entire study is, again, limited for
�ky � ��0 /c, for the reasons exemplified in the previous para-
graphs. First of all, we may attest that H��� has two poles at
±�0 for any finite gon�t� in the interval �0,T�, which provide
the field pattern at the working frequency �0. Conversely,
S��� and A��� are zeroed at an infinite number of �i

s and �i
a

points in the right complex half plane, with index i receiving
values from −
 to 
. Because S��� and A��� are symmetri-

cal with regard to the imaginary axis, the complex numbers
−��i

s�* and −��i
a�* �the asterisk signifies the complex conju-

gate� are also their roots. Specifically, for i=0, the roots of
S��� and A��� correspond to surface plasmons which decay
exponentially in both the air and the DNG medium �38�.
These roots have small imaginary parts for small losses,
while their real parts are close to �0 and satisfy the Re��0

s�
��0, Re��0

a���0 relations. In this context, roots of negative
i describe surface modes with an exponential decay in the air
and a guided profile in the slab �39�. Their chief trait is that
they involve small imaginary parts, as well. In contrast, �i

s,a

of positive i tally with the lateral waves evolving at the air-
metamaterial interfaces. The real and imaginary parts of
these roots grow from 0 to 
, as i increases. Figure 3 dis-
plays a graphical representation of K��� poles for a pre-
scribed set of Drude parameters �p=�0


2, �=5�10−4�0,
and two different d.

Having determined the appropriate theoretical assets, we
next proceed to the development of the proposed approxi-
mate formula for I and, consequently, for Ez�xf ,y , t ;ky�,
which is necessary for the extraction of the fields’ transient
behavior. If branch cuts were absent in the complex � plane
and since the integral of K��� along the upper infinite semi-
circle is zero for t�T, the residual theorem implies that I
equals the sum of K��� residues at ±�0 and �i

s,a ,−��i
s,a�*. In

the presence of branch cuts, however, their contribution to
the computational procedure should be incorporated by any
means, namely, the integrals of K��� around them �red dash-

FIG. 2. �Color online� Integration paths for I in the complex �
plane.

FIG. 3. �Color online� Poles of K��� in the Re����0 half plane
for a DNG slab with a refractive index of −1.0− j0.001 at central
frequency �0, ky =2.0k0, and d��a� 0.20, �b� 0.80. The axes are
normalized with respect to �0.
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dotted lines in Fig. 2�. Also, due to the symmetry of K���,
one may deduce that it is sufficient to calculate its integral—
symbolized as I�—around the right-half-plane branch cut, or
alternatively its integrals along the Re���=cky ±� and
Im����0 lines, with � an infinitesimal positive quantity. An-
other noteworthy remark is the considerably rapid reduction
of the ej�t term in K��� for large t, as Im��� increases from
0 to 
 on the integration path of I�. This simply implies that,
for large t values, K��� is nonzero solely for � located very
close to the real axis and I� is zero as a fairly acceptable and
reliable approximation. Thus, I can be written as

I � j2	�Res�0
K + Res−�0

K + �
i=−





�Res�i
sK + Res�i

aK

+ Res−��i
s�*K + Res−��i

a�*K�	 , �5�

where Resz0
f denotes the residue of f�z� at z0. Additionally,

because H��� decreases—at the worst case of
T=0—according to an inverse square law away from �0, the
only residues that essentially influence the computation of I
are those at the �0

s,a and −��0
s,a�* poles. So, bearing in mind

that K��� is symmetrical on either side of the imaginary axis,
Eq. �5� can be further simplified and, after some calculus,
becomes

I � T0 + T0
s + T0

a. �6�

The term T0 signifies temporal evolution at �0, while T0
s and

T0
a correspond to the symmetrical and antisymmetrical sur-

face plasmons, respectively. Their evaluation is precisely
performed through

T0 = 2	�0 Im� ej��0t−kx��0�d�

S��0�A��0�
	 , �7a�

T0
s = − 4	 Im� ej��0

s t−kx��0
s �d�

S���0
s�A��0

s�
H��0

s��0
s	 , �7b�

T0
a = − 4	 Im� ej��0

at−kx��0
a�d�

S��0
a�A���0

a�
H��0

a��0
a	 . �7c�

Figure 4 depicts the absolute error in time between the ap-
proximate value of I, obtained from Eq. �6�, and the exact
one acquired via numerical integration for different ky and d.
Their evident agreement �very small errors� is indeed fairly
promising, especially for large t, hence confirming the con-
sistency of our conventions for Eq. �5�.

Subsequently, our attention is concentrated on the estima-
tion of the transient times for the infinite DNG slab through
Eq. �6�. With this objective, it is straightforward to detect
that the main T0 term, expressing the eligible part of the
field, has a sinusoidal profile, namely, T0=A0 sin��0t+�0�,
with A0 the amplitude and �0 the phase. In addition, the
undesirable plasmonic T0

s,a quantities comply with the T0
s,a

=A0
s,ae−Im��0

s,a�tsin�Re��0
s,a�t+�0

s,a� relation, where A0
s,a and

�0
s,a denote the analogous amplitude and phase counterparts.

Actually, these terms are responsible for various detrimental

transient phenomena, which degrade the overall image qual-
ity. Notice that, in the lossless �Im��0

s,a�=0� case, T0
s and T0

a

never decay, leading the surface plasmon excitation to seri-
ous instabilities in the sense of the field’s inability to reach a
steadystate. Conversely, when losses are present, the tran-
sient terms follow an exponential decay rule with a damping
coefficient of Im��0

s,a�. The above analysis is applicable for a
sinusoidal current source along the y axis, like f�y�
=sin�kyy� or a DNG slab placed in a waveguide, where
modes with such characteristics can be produced.

Nonetheless, the examination of an infinite slab, excited
by an arbitrary source pattern, is definitely far more compli-
cated. In particular, consistent with Eqs. �1� and �6�, the total
field is given by

Ez�xf,y,t� = −
�0

8	2�
−





F�ky�T0�ky�e−jkyydky

−
�0

8	2�
−





F�ky�T0
s�ky�e−jkyydky

−
�0

8	2�
−





F�ky�T0
a�ky�e−jkyydky . �8�

The first integral in Eq. �8� provides the field distribution at
the focus plane at central frequency �0 and is expressed as

Ez

�xf,y,t� = −

�0�0

2	
A
�y�sin��0t + �
�y�� , �9�

with A
 ,�
 satisfying the relation

A
�y�ej�
�y� = �
0




Re�F�ky�e−jkyy�
e−jkx��0�d

S��0�A��0�
dky . �10�

On the other hand, the second and third integrals deal with
the description of transient phenomena. Observing that

T0
s,a�ky� have the form of a�ky�ej Re��0

s,a�ky��t, with a�ky� a
smooth function of ky, and employing a stationary phase ap-
proximation, it can be proven that, for large t values, the
third integral is equal to zero and the second one is approxi-
mated through

Ez
s�xf,y,t� =

�0

	
Re�F�ky

st�e−jky
sty�As

ste
−Im��0,st

s �t


t

�sin�Re��0,st
s �t + �s

st� . �11�

The As
st ,�s

st terms satisfy the identity

As
stej�s

st
=

e−jkx��0,st
s �d

S���0,st
s �A��0,st

s �
H��0,st

s ��0,st
s 
 j2	

Re��0
s�st�

,

�12�

while ky
st stands for the spatial frequency at which d�0

s /dky
=0. Furthermore, the subscript st in �0,st

s denotes that the
specific quantity is computed at ky

st and Re��0
s�st� is the second

derivative of Re��0
s� at ky

st �for the detailed extraction of Eq.
�8�, see the Appendix�.

It is important to stress that Eq. �11� is in agreement with
the outcomes presented in Refs. �48,49�, which attribute
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Ez�xf ,y , t� fluctuations to the symmetrical surface polariton
of zero group velocity vg=d�0

s /dky. According to the physi-
cal explanation, discussed in previous studies, this situation
occurs because surface modes with vg�0 travel toward in-
finity away from y=0, counter to the mode with vg=0,
whose energy remains confined near the x axis, thus contrib-
uting to the field at the image plane. However, despite what
has been previously reported, the 1/
t term in Eq. �11� im-
plies that even in the lossless case the transient phenomena
inside an infinite DNG slab decay very slowly and the field
at the image plane attains a steady state. Such a significant
conclusion is accredited to the participation of all surface
polaritons, next to the one with vg=0, in the evolution of
Ez

s�xf ,y , t�, as obtained from the stationary phase approxima-
tion. These polaritons possess nonzero, yet rather small,
group velocity and propagate slowly toward infinity. Conse-

quently, and as time elapses, unwanted oscillations are sup-
pressed to zero, since the term with vg=0 cannot exclusively
achieve finite field amplitudes for source spatial distributions
without a sin�ky

sty� or cos�ky
sty� quantity.

Typical forms of the electric field amplitude in the time
domain, as acquired from Eqs. �9� and �11�, are shown in
Fig. 5 for a set of different � and d. Clearly, as losses aug-
ment, the number of periods required for the system to reach
steady state decreases. As far as d is concerned, amplitude
oscillations in thinner slabs become considerable at larger
frequencies, since �0,st

s deviates from �0 as d diminishes.
Also, the propagation of electromagnetic waves through a
thinner slab induces smaller attenuation losses, implying that
A
 increases. Similar deductions can be drawn by the inspec-
tion of Fig. 6, which illustrates the amplitude ratio of the
stationary surface polariton, Est, to the main E0 term at �0,

FIG. 4. �Color online� Absolute temporal error between approximate and exact I values for �a� ky =1.01k0 ,d=0.20, �b� ky =2k0 ,d
=0.20, �c� ky =3k0 ,d=0.20, �d� ky =1.01k0 ,d=0.80, �e� ky =2k0 ,d=0.80, and �f� ky =3k0 ,d=0.80. The vertical axis is normalized with
respect to �0 /k0.
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obtained through a fast Fourier transform �FFT�. The larger
this ratio, the greater the contribution of the surface polar-
iton. In addition, it becomes obvious that, except for its re-
duction with the growth of losses, the aforementioned ratio
increases as the slab thickens, but with a constantly dimin-
ishing rate, until it reaches an upper bound. This phenom-
enon is ascribed to the fact that for large d the slab, regarding
the surface modes, tends to adopt the behavior of a metama-
terial half space, because the interaction between the slab
interfaces, responsible for the generation of symmetrical and
antisymmetrical modes, lessens.

It should be underlined, herein, that another advantage of
our algorithm is the efficient derivation, via Eq. �11�, of an
exact relation among the transient time of the DNG super-
lensing structure and its geometrical parameters. Actually, if
A


0 is the steady-state amplitude at y=0, the time at which
surface polaritons decay to �A


0 is

t� =
1

2 Im��0,st
s �

r� �0A

0

2 Re�F�ky
st��As

st	2 1

2 Im��0,st
s �� ,

�13�

where � is a real number less than unity and r�a� the root of
the equation e−x=ax. Note that, since r�a� increases as a
decreases and As

st is proportional to H��0,st
s �, larger T values

result in smaller t�. In this framework, Fig. 7 presents the
variation of t0.01 with T for several �, when the modulation
function is

gon�t� =
1

1 + e−at , �14�

with a a positive real constant. Even though gon�t� has not
exactly the form described in the beginning of this section
�not 0 for t�0 nor 1 for t�T�, it is possible to choose T as
the time needed for gon�t� to grow from 0.01 to 0.99. Exam-
ining the plots of Fig. 7, we observe that for small T, which
means abrupt changes in the time domain or wide frequency
content, t� is almost flat and strongly dependent on losses. As
T increases, the spectral content of the initialization pulse at
�0,st

s decreases and the symmetrical mode, accountable for
amplitude fluctuations in the field, is not excited. The last
deduction, in turn, leads to small transient times and inde-
pendence of �, which in Fig. 7 is depicted through the coin-
cidence of the curves that correspond to different �.

Finally, it is significant to stress that, although, the previ-
ous analysis deals with temporally dispersive and isotropic
materials, it can be successfully extended to the more com-
plicated, yet realistic, nonlocal, anisotropic media. Among
them, wire media constitute an illustrative example. Struc-
tured in arrays, these substances �for wavelengths much
larger than the inner period of the array� may be described by
an effective plasmon-pole electric permittivity tensor �50�

�̄̄ = �0��rx̂x̂ + ŷŷ + ẑẑ�, �r��,kx� = 1 −
�p

2

�2 − c2kx
2 ,

�15�

with the x axis parallel to the wires and �p the plasma fre-
quency. Such media are broadly used in subwavelength im-
aging devices, either as a part of DNG lenses �51� or alone.
The physical mechanism that governs the latter application is
the potential of guiding electromagnetic waves along the
wire medium axis with the speed of light and arbitrary trans-
verse �perpendicular to the medium axis� wave number com-
ponent �52�. In particular, the field at the back face of a slab,
so devised, is given by an expression similar to Eq. �2�;
however, S��� and A��� are described via different relations.

FIG. 5. �Color online� Temporal evolution of Ez�xf ,0 , t� normal-
ized to �0�0 for various � and d.

FIG. 6. �Color online� Amplitude ratio of the stationary Est term
to the main one E0 as a function of � for several d.

FIG. 7. �Color online� Variation of t0.01 �damping time for �
=0.01� versus the rise time T of gon�t� for d=0.20 and different �.
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As already investigated, the roots of these new S��� and
A��� provide the eigenfrequencies of specific eigenmodes
traveling in the wire medium perpendicular to its axis. Since
for specific ky these roots are located on the real � axis for
zero losses, the excited eigenmodes oscillate constantly
when the source has an exponential e−jkyy profile parallel to
the medium faces. Nevertheless, when a more realistic
source, with a finite spatial distribution, is considered, the
absence of any stationary points in the dispersion diagrams is
estimated to result in the fast restoration of the steady state.
This is in contrast with the local medium case, where the
existence of a point with a zero group velocity in the sym-
metrical mode dispersion diagram imposes a slowly decay-
ing transient phenomenon.

III. FINITE DNG SLAB MODELING: NUMERICAL
RESULTS

After the successful extraction of these approximate
schemes for the temporal evolution of electric fields at the
image plane of an infinite planar DNG slab, the present sec-
tion delves into the more realistic finite-slab case by means
of a rigorous dispersive FDTD algorithm. Basically, the key
motives for the implementation of the latter technique are the
prohibitive difficulties arising in the development of pure
time-dependent analytical solutions for the fields at these
particular structures.

A critical issue for the consistent establishment of the
FDTD method in DNG materials, where strong evanescent
waves are involved, lies on the appropriate selection of its
discretization spatial increment �46,53�. The impact of this

observation is anticipated to be more intense in our simula-
tions, whose duration lasts many periods, and even a small
lattice reflection error is likely to produce serious and accu-
mulating artificial discrepancies from the actual values.
Therefore, before proceeding with the numerical results, it is
deemed important to verify the accuracy of the frequency-
dependent FDTD schemes in metamaterial applications, by
comparing the variation of calculated and exact field compo-
nents for a problem of known analytical solution. More spe-
cifically, consider an infinite planar slab illuminated by a
source with a sinusoidal sin�kyy� spatial profile, where the
electric field at the image plane is given by Eq. �2�. The slab
is numerically manipulated via a parallel plate waveguide
equivalent whose width is carefully chosen in order to allow
the exclusive excitation of a certain evanescent mode �17�.
The open ports of the structure are terminated by a complex
frequency-shifted perfectly matched layer �54,55�, suitably
modified to cope with DNG media, while the current source
is launched at a prefixed cross section of the waveguide.
Figure 8 depicts the theoretically derived electric field com-
pared to the numerically computed one, at two distinct tem-
poral intervals, for a slab of d=0.20 and ky =1.01k0, 1.5k0.
The spatial step of the method is set at �x=�y=0 /100. As
deduced, the agreement between the results is very satisfac-
tory, hence permitting us to reliably employ the proposed
FDTD algorithm for the analysis of finite slabs.

Let us now assume the finite-sized counterpart of the pla-
nar DNG structure, depicted in Fig. 1, with a length L along
the y axis. Figures 9�a� and 9�b� illustrate the temporal varia-
tion of the electric field amplitude at the �xf ,0� image point
before and after transient phenomena have damped down, for
diverse L and d=0.20. Clearly, all steady-state outcomes

FIG. 8. �Color online� Theo-
retically and numerically ex-
tracted electric field values at two
different time intervals for a DNG
slab with d=0.20 and ky��a�,�b�
1.01k0 and �c�,�d� 1.5k0.
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obtained for both the finite and infinite slabs �L= 
 � are in
excellent coincidence, confirming that the finite length does
not drastically affect the behavior of the structure at the cen-
tral frequency �0 �46�. Nevertheless referring to transient
phenomena, substantial differences are observed. To be more
specific, in contrast to the L=
 slab where only the �0,st

s

surface plasmon contributes to the amplitude ripple, several
modes are excited at the finite case. This phenomenon can be
further exemplified by inspecting the FFT of the field, shown
in Fig. 10. As derived, a dominant mode, which matches the
highest peak of the spectrum, appears near the infinite-slab
single mode, yet with a larger amplitude that keeps on esca-
lating with the reduction of L. Also, secondary modes, whose

population augments as the slab is elongated, arise between
the central frequency and the dominant mode. It has to be
mentioned that similar behavior is observed in the antisym-
metric mode region, with the exception of smaller ampli-
tudes and the absence of the dominant mode.

A possible explanation for the discrete number of surface
modes can be provided by regarding a planar DNG slab as a
waveguide, along the y direction, with modes the symmetric
and antisymmetric surface plasmons. In this framework, the
infinite slab corresponds to an unbounded waveguide, where
surface modes travel freely toward infinity and contribute to
the field image according to the mechanism described in the
previous section. Conversely, in a finite slab, surface plas-
mons are reflected at its edges, with the whole structure act-
ing like a resonator which allows the generation of specific
modes. Figure 11 presents the spatial profile of field ampli-
tude for the first six modes �the dominant one included�,
while L=100 and d=0.20. In all cases, the field is confined
in the −L /2�y�L /2 span, thus proving the claim that the
finite length leads to a resonatorlike performance. Moreover,
the amplitude maxima and zeros point out the presence of
stationary waves, as occurs in a real resonator. The fluctua-
tions in the maximum amplitude are attributed to the exis-
tence �in pairs� of surface plasmons, with different transverse
wave numbers for frequencies between �0 and �0,st

s , due to
the form of the dispersion relation S�� ;ky�=0. On the other

FIG. 10. �Color online� Frequency-domain electric field ampli-
tude at �xf ,0� image point for a DNG slab with a varying L and d
=0.20.

FIG. 9. �Color online� Electric field amplitude at �xf ,0� image
point for a DNG slab with a varying L and d=0.20 �a� before and
�b� after the damping of transient phenomena.

FIG. 11. �Color online� Spatial profile of the electric field for the first six modes of a planar DNG slab with L=100 and d=0.20.
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hand, Fig. 12 describes ky for each surface mode of a slab
with L=100 and d=0.20, obtained numerically via a spa-
tial FFT and analytically through the previous dispersion re-
lation. The promising coincidence between the results vali-
dates our initial supposition that surface plasmons in a finite
slab play the role of resonant modes in a cavity.

An alternative and equally instructive interpretation of the
cavity effect may be accomplished through Fig. 13, which
shows the ky variation as a function of mode order for dif-
ferent L and d. By the term “mode order,” we presume an
integer n exclusively referring to a specific mode, with 1 the
value for the dominant one. Note that, in ordinary rectangu-

lar or circular cavities, n is related to the phase constant ky of
each mode via kyL�n	 and expresses the number of field
nullifications along the cavity length L. So ky is proven to be
proportional to n with the modes forming a line of slope 	 /L
in the ky-n plane. A similar behavior is detected for the planar
finite DNG slab, as well. In particular, Fig. 13 verifies that
the dependence of ky and n is linear, aside from a slight
deviation for small n. Since the excitation source is placed on
the y axis, which coincides with the structure’s center along
the x direction, we have to consider only those surface modes
with a nonzero amplitude at x=0. This situation, in the usual
cavities, is equivalent to taking into account the modes for
which n is an odd number or kyL= �2m+1�	. Differently
speaking, the slope of the finite slab ky-n lines is expected to
be around 2	 /L. In Table I, one can observe the numerically
and theoretically extracted slopes of the curves plotted in
Fig. 13. Their considerable agreement, especially for d
=0.20 and large L choices, substantiates, again, the consis-
tency of our conclusion that a finite DNG slab behaves like a
resonant cavity.

Nonetheless, the linearity deviations appearing in Fig. 13
for modes near the dominant one constitute an issue of fur-
ther investigation. A rational explanation for this result rests
on the fact that, due to the dispersion relation, at each reso-
nant frequency there exist two surface polaritons, for in-
stance � and �, with distinct transverse wave numbers ky

�

�ky
st and ky

��ky
st, respectively. If the amplitudes of these

modes are A� and A�, the electric field boundary condition at
slab edges is, approximately, A� sin�ky

�L /2�+A� sin�ky
�L /2�

=c, with c a small real number accounting for the lack of
edges to act as perfect electric or magnetic walls. Also, no-
tice that both sinusoidal terms stem from the practically com-
plete reflection of surface modes at x= ±L /2. For resonant
frequencies near �0, simulations show that A� is much
smaller than A� �A� /A��10�, which simplifies the boundary
condition to A� sin�ky

�L /2�=c, with solutions given by kyL
=2m	+sin−1c, for m�N. Even though the last equation
does not explicitly involve n, consecutive m generate succes-
sive modes, permitting the derivation of a linear relation be-
tween m and n, that, in turn, indicates the linear dependence
of ky on n. In contrast, as one reaches the stationary sym-
metrical surface mode, A� becomes comparable to A� and
the solution of the boundary condition is nonlinear with re-
spect to n.

As already introduced in the previous section, a decisive
factor that characterizes the slab’s behavior is the transient

FIG. 12. �Color online� Variation of ky versus mode order n,
numerically calculated, via a spatial FFT, and analytically acquired,
through the dispersion relation.

FIG. 13. �Color online� Variation of ky versus mode order n, for
different L and d��a� 0.20 and �b� 0.40.

TABLE I. Numerically calculated and theoretically predicted
slope values of the curves in Fig. 13, for planar DNG slabs with
d=0.20 and 0.40 and diverse L.

L d=0.20 d=0.40 Theoretical

50 0.1788 0.1658 0.2

60 0.1527 0.1414 0.1667

80 0.1180 0.12 0.125

90 0.1043 0.1026 0.1111

100 0.0959 0.0909 0.1

TEMPORAL CHARACTERISTICS OF RESONANT SURFACE… PHYSICAL REVIEW E 76, 046606 �2007�

046606-9



phenomena damping time t�. Table II provides t0.01 for slabs
with varying dimensions and �=0.001, along with the corre-
sponding value for an infinite slab of the same d. A first
deduction is that t0.01 of the finite slab is about three times
larger for d=0.20 and two times larger for d=0.40 than its
infinite slab counterpart. This difference is in absolute agree-
ment with the resonatorlike description, since the excited
modes in the finite slab obtain greater amplitudes than those
in the infinite structure, due to the energy confinement in the
metamaterial region. Actually, it is the totally different
mechanism of mode excitation between the two cases that
justifies such discrepancies. To be more exact, in the infinite
slab the almost zero group velocity results in very slow mode
propagation near �0,st

s toward infinity and creates a certain
amplitude fluctuation. In the finite case, on the other hand,
the excited modes oscillate inside the slab edges, irrespective
of their group velocity, and the only way they can be damped
down is through losses. The last remark is clearly confirmed
by means of Fig. 14 which displays the transient phenomena
amplitude for a lossless slab with L=70 and d=0.20 com-
pared to its infinite analogue. Note that the amplitude in the
finite slab is always larger than that of the infinite case.
Lastly, in the former structures, surface modes do not attenu-
ate as occurs in the latter �according to a 1/
t law�, with the
exception of small temporal intervals.

IV. CONCLUSION

In this paper, the transient behavior of arbitrarily sized
planar DNG slabs has been elaborately explored, from both
analytical and numerical points of view, in terms of an inte-
grated methodology. In particular, an exact formula for the
temporal evolution of the field, when the source is sinusoi-
dally distributed along the longitudinal direction, has been
derived through a complete contour path integration. Apart
from the main term of interest at frequency �0, where �r
=�r=−1− j�, a symmetric and an antisymmetric surface po-
lariton are excited at adjacent frequencies, whose amplitudes
decrease with time according to an exponential rule that de-
pends on losses. In the lossless case, however, the transient
phenomena are never damped down and the image is un-
stable. Furthermore, a relation for the time-domain field in-
duced by an arbitrary source has been developed, exhibiting
an exponential and an inverse square root decrease of the
excited stationary polariton amplitude with time. In contrast
to the sinusoidal source, the presence of the square root term
imposes a very slow attenuation on the transient amplitude,
which has not been predicted by previous works. Equiva-
lently, the transient time, which can now be readily com-
puted without the need of any laborious numerical simula-
tion, has been proven to be directly associated with the
source spectral content at the resonant frequency.

Moreover, the proposed analysis examined the finite DNG
slab case via a precise dispersive FDTD algorithm. The re-
sults indicate substantial amplitude fluctuations, larger than
those of infinite structures, which after a temporal and spatial
FFT were interpreted through a cavitylike effect. In this con-
text, each cavity mode coincides with a specific surface po-
lariton, while its phase constant follows a linear relation with
respect to mode order, as happens in regular cavities. A slight
nonlinearity arising for small orders is attributed to the exci-
tation of a couple of surface polaritons at a single frequency,
owing to the dispersion relation. This highly resonant behav-
ior of finite slabs yields greater transient times, especially for
the lossless case. Extensive investigations have also revealed
that the transient time is, primarily, determined by the domi-
nant surface mode, located near the stationary counterpart.
Finally, among potential future perspectives is the derivation
of analytical formulas for the excited modes of finite
metamaterial slabs, similar to the ones for the infinite case.
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APPENDIX: DERIVATION OF Eq. (11)

In this appendix, we provide the calculation process for
the second term �ST� on the right-hand side of Eq. �8�. Ob-
serving Eq. �8�, the ST is extracted by integration from −
 to

 with respect to ky, which involves F�ky� and T0

s�ky� as well.
Because f�y� is a real function of y, it entails that F�−ky�
=F*�ky�. Furthermore, �0

s is an even function of ky, resulting

TABLE II. Transient time t0.01 normalized to T0 for planar DNG
slabs with d=0.20 and 0.40 and diverse L, including the infinite
case.

L d=0.20 d=0.40

50 1.2974�103 1.3674�103

60 1.7116�103 1.5101�103

70 1.2101�103 1.2177�103

80 1.4422�103 1.5747�103

90 1.4159�103 1.4276�103

100 1.5291�103 1.4621�103


 596.21 753.82

FIG. 14. �Color online� Transient phenomena temporal evolu-
tion for a planar DNG slab with L=70 compared with the corre-
sponding infinite one, when d=0.20 and �=0.
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in T0
s�−ky�=T0

s�ky�. Therefore, bearing in mind Eq. �7�, the
ST can be expressed as

�0

	
Im��

0


 ej��0
s t−kx��0

s �d�

S���0
s�A��0

s�
H��0

s��0
sRe�F�ky�e−jkyy�dky	 .

�A1�

The previous integral can be computed for large t by means
of the stationary phase approximation, which states that for
large  values the definite integral

I = �
a

b

f�x�ejg�x�dx �A2�

of smooth functions f�x� and g�x�, with g�x� real, is approxi-
mated by

I � f�c�ejg�c�
 j2	

g��c�
, �A3�

for c the stationary point of g�x� in the �a ,b� span. Herein,
x�ky, � t, g�x��Re��0

s�ky��,

f�x� � Re�F�ky�e−jkyy�
e−Im��0

s �te−jkx��0
sd�

S���0
s�A��0

s�
H��0

s��0
s ,

and c=ky
st is the longitudinal wave number at which

d�0
s /dky =0. Consequently, if �0,st

s is the symmetrical surface
polariton frequency at ky

st, the ST is obtained via

�ST� =
�0

	
Im��F�ky

st�ej��0,st
s t−ky

sty��
e−jkx��0,st

s d�

S���0,st
s �A��0,st

s �

� H��0,st
s ��0,st

s 
 j2	

t Re��0,st
s ��

	 , �A4�

which is equivalent to Eqs. �11� and �12�. An indication of
the validity of Eq. �A4� can be seen in Fig. 15, which depicts
the FFT electric field amplitude at �0,st

s , as evaluated by the
numerical integration of Eq. �A1� and the proposed approxi-
mate expression of Eq. �A4�.
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